Наблюдения за космической погодой: что мы узнали о Солнечной системе?

Погода на Земле – привычное явление и достаточно изменчивое. Порой она поражает своей красотой, иногда пугает, но все это делает ее живой для нас. И даже в таком мрачном местечке, как космос, погода имеет свой “уровень”. Космическая погода относится к изменениям в окружающей нас солнечной активности и ее влиянии на Землю и ближнюю околоземную среду. Включая солнечные вспышки, солнечные ветры и геомагнитные бури. Космическая погода может оказывать значительное влияние на нашу технологическую инфраструктуру, электромагнитные коммуникации, астронавигацию и даже на здоровье людей в космосе и на Земле. И, как мы уже привыкли, ученым не так много известно о ее формировании, а предсказать ее – та еще задача.

Наблюдения за космической погодой: что мы узнали о Солнечной системе? Солнечные бури могут вызвать красивое явление, известное как полярное сияние. Это происходит, когда заряженные частицы, выброшенные Солнцем, сталкиваются с атмосферой Земли и заставляют ее светиться в ярких красных, зеленых и синих тонах. Фото.

Солнечные бури могут вызвать красивое явление, известное как полярное сияние. Это происходит, когда заряженные частицы, выброшенные Солнцем, сталкиваются с атмосферой Земли и заставляют ее светиться в ярких красных, зеленых и синих тонах.

Содержание

Что такое космическая погода?

Солнечная активность является одним из основных источников космической погоды. Каждые 11 лет наблюдается пик активности Солнца, когда количество пятен и вспышек достигает максимального значения. Во время солнечной вспышки происходит внезапное увеличение излучения, которое может влиять на электронику спутников и других космических аппаратов.

Что такое космическая погода? Солнечные пятна — это темные пятна на поверхности Солнца, которые выглядят темнее и холоднее окружающих областей. Они образуются из-за магнитных полей, которые проникают через поверхность Солнца и затрудняют конвекцию тепла. Фото.

Солнечные пятна — это темные пятна на поверхности Солнца, которые выглядят темнее и холоднее окружающих областей. Они образуются из-за магнитных полей, которые проникают через поверхность Солнца и затрудняют конвекцию тепла.

Еще одним важным фактором космической погоды являются радиационные пояса, которые окружают Землю. Это такие области, которые содержат высокоэнергетические частицы.

И как вы уже поняли, такая погода бывает не всегда приятной, геомагнитные бури явное тому доказательство. Геомагнитные штормы возникают в результате взаимодействия солнечного ветра с магнитным полем Земли. Солнечный ветер в свою очередь является потоком заряженных частиц (электронов и протонов), истекающих из верхней атмосферы Солнца со скоростью более 400 км/с. Когда они сталкиваются с магнитным полем Земли, они взаимодействуют с его линиями силы, вызывая электрические токи в верхней атмосфере Земли.

Интенсивность геомагнитных штормов измеряется в единицах G (гаусс). Средняя интенсивность магнитного поля Земли составляет около 0,5 G. Во время геомагнитного шторма интенсивность магнитного поля может изменяться на несколько единиц G.

Влияние космической погоды на здоровье

Но не только электроника страдает от подобных вспышек. Эта радиация, включая ультрафиолетовое (УФ) излучение и рентгеновское излучение, может проникать через атмосферу Земли и оказывать влияние на живые организмы. УФ-излучение из солнечных вспышек может приводить к повышению риска развития рака кожи и ожогов, а также вызывать катаракту и другие проблемы со зрением. Кроме того, геомагнитные бури могут вызывать изменения в психофизиологическом состоянии человека, включая настроение, сон и давление. Некоторые исследования также показали, что во время таких бурь повышается риск возникновения инфарктов и инсультов.

Влияние космической погоды на здоровье. Солнечные пятна имеют свою полярность. В одном солнечном цикле северный полюс солнечных пятен имеет одну полярность, а южный полюс имеет противоположную полярность. В следующем цикле эта полярность меняется. Фото.

Солнечные пятна имеют свою полярность. В одном солнечном цикле северный полюс солнечных пятен имеет одну полярность, а южный полюс имеет противоположную полярность. В следующем цикле эта полярность меняется.

Такие штормы способствуют нарушению электрической активности сердца, вызывая нерегулярности сердечного ритма и образовывая тромбы. Кроме того, геомагнитные бури могут влиять на систему свертывания крови. Исследования показали, что во время них происходит увеличение активности тромбоцитов, клеток, отвечающих за свертывание крови.

Космические волны и их связь с космической погодой

По мнению исследователей новое понимание «космических волн» может привести к более точным прогнозам космической погоды и более безопасной навигации для спутников, проходящих через радиационные пояса.

Последние результаты работы группы, опубликованные в журнале Nature Communications, показывают, что колебания магнитного наклона Земли, который меняется сезонно и ежедневно, а также ориентирован на Солнце или от него, могут вызывать изменения в космических волнах большой длины.

Космические волны и их связь с космической погодой. Северные сияния также иногда называют авророй. Фото.

Северные сияния также иногда называют авророй.

Эти разрывные волны, известные как волны Кельвина-Гельмгольца, возникают на границе между солнечным ветром и магнитным щитом Земли. Волны возникают гораздо чаще в весенний и осенний периоды, сообщили исследователи, в то время как летом и зимой волновая активность слабая.

Плазма или солнечный ветер, идущий от Солнца с огромной скоростью, направляет энергию, массу и импульс на магнитный щит планеты. Он также создает космические волны.

Быстро движущийся солнечный ветер не может пройти непосредственно через магнитный экран Земли, поэтому он проносится вдоль магнитосферы, порождая волны Кельвина-Гельмгольца с массивными пиками высотой до 15 000 км и длиной до 40 000 км.

Безопасность астронавтов и спутниковой связи

Распространение плазмы солнечного ветра через электромагнитные волны может воздействовать на магнитосферу и привести к изменению потоков энергичных частиц в радиационном поясе. Это в свою очередь может представлять угрозу для безопасности космонавтов и спутниковой связи, а также оказывать влияние на электросети и системы глобального позиционирования на Земле.

Безопасность астронавтов и спутниковой связи. Наблюдение за солнечными пятнами помогает ученым прогнозировать солнечную активность и ее влияние на земные условия. Фото.

Наблюдение за солнечными пятнами помогает ученым прогнозировать солнечную активность и ее влияние на земные условия.

Ученые отмечают, что для понимания и прогнозирования космической погоды крайне важно изучать свойства космических волн и механизмов, которые способствуют их усилению. Хотя события космической погоды представляют собой растущую угрозу, часто неясно, что именно является их источником. Поэтому достижение прогресса в понимании механизмов, лежащих в основе этих возмущений, позволит улучшить способность предоставлять прогнозы и предупреждения.

Исследователи изучают изменения в активности магнитного поля Земли в разное время года и в течение суток с целью выяснить причины этих изменений. Они предложили несколько различных идей и гипотез для объяснения этого явления. Одна из таких гипотез заключается в эффекте Рассела-Макферрона, который был впервые описан в 1973 году. Он объясняет, почему авроры (яркие светящиеся явления в атмосфере) возникают чаще и ярче весной и осенью. Эта гипотеза основана на взаимодействии наклона магнитного поля Земли и небольшого магнитного поля около экватора Солнца.

Однако исследование показывает, что данный эффект не является единственным объяснением сезонной вариации геомагнитной активности. События, вызванные равноденствием и основанные на наклоне земного диполя, а также эффект Рассела-Макферрона могут действовать одновременно.

Ученые также сделали вывод, что активность волн Кельвина-Гельмгольца демонстрирует сезонные и суточные вариации, что указывает на критическую роль наклона диполя. Это значит, что угол наклона магнитного поля вокруг Земли меняется в разные времена. Изменения происходят на границе между магнитным полем Земли и внешней средой, называемой магнитопаузой (стык солнечного ветра и магнитного поля). Наклон диполя, который представляет собой ось магнитного поля Земли, играет важную роль в этом изменении.